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Abstract

Users of digital i]nagc libraries are oftc]l  not interested in image data per se but in derived
products sLIch as catalogs of ohjccts of interest. Converting an image database into a usable
catalog is typically carried out manually at prescn]t. For many larger image databases the
~nlrcly  Inanual  approach is completely impractical. In this paper we describe the development
of a trainable cataloging system: the user indicates the location of the objects of interest for
a number of trai]]i]lg images .ancl the system learns to detect and catalog these objects in the
rest of the datahsc. In par titular we describe the application of this system to the cataloging
of small vo]canocs in radar images of Venus. The volcano problem is of interest because of the
scale (30,000 images, order c)f 1 million detectable volcanoes), technical difficulty (the variability
of the volcanoes in appcarancc)  and the scientific importance of the problem. The problem of
uncertain or subjective grou]]d truth is of fundamental importance in cataloging problems of this
natur-c and is discussed in some detail. Experimental results are pIcsented which quantify and
compare the detect ion pcrfor  mance of the system relative to human detection performance. The
paper concludes by cliscussing  the limitations of the ]Jroposed  system and the lessons learned of
genera] relcvancc  to the development of digital irnagc  libraries.

Keywords: digital image libraries, pattern recognition, science data analysis, volcanoes, Venus,
SAR, detection, classification, lcarlliug,  remote scnsi]]g
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? 1 Introductiont
III rcccnt  years tlmm have been significant advances in image acquisition  and storage technologies.
I,argc  ilnage clat abases ill fields as di~wrs f. as astronomy, geology, and diagnostic medicine are
increasingly routine. However, our ability to analyze data lags fat behind our ability to collect
data. Users of image databases, such as astronomers, geologists, and medical experts, are not
intcrcstcd  in khc in mgc data per se. The images are but an intermediate representation from which
hypotheses can bc inferred about the physical properties of tile targets being imaged. Many image
database users wish to work with dcrivccl  image products, such m catalogs of objects of interest.

l~or cxal]]plc, ill plallcta.ry scicnc’c, the scientific Ijroccss  involves examination of images (and
other data) from planetary bodies such as Venus and Mars, the conversion of these images into
catalogs of geologic objects of interest, and the use of these catalogs to support, refute, or originate
t Ilcorics about t hc gcolosic CVOI1l  t ion and current state of the planet. Typically these catalogs
contain information abotl t the location, size, shape, and  general context of the object of interest
and arc pul)lishcd  mid made gcncral]y available to the planetary science community [1].

In the last 3(I years remote spacecraft have provided far more detailed planetary images than
were previously avaiial)lc , all(l  sllbscclucnt]y  our understanding of the physical geology of the planets
has incrcascd  substantially. Nonetheless much rernaitls to bc discovered and the scientific process
is ongoing. Traclitionally  the analysis of planetary surface images has been a manual process where
much of the work was carried  CJUL by geologists analyzing hard-copy images. There is currently a
significant shift to computer-aiclcd processing of planetary data, a shift which is driven by the public
availability of many planetary clatascts in digital forll~ on CD-ROMS [2]. Thus far, however, the
geologist’s routine rclnail IS lar~cly manual: the computer is used as a storage and display tool, but
is hardly USCC1  for automated analysis. IIcnce, what could potentially be turned into a large digital
image library is simply stored ~as raw image data. Given the volume of data being collected (see
for example Section 3) purely manual  cataloging of objects of interest is completely impractical.
Thus, as in the volcano problem discussed later, scie]  kists  are manually cataloging small portions
of the datasct  and inferring what they can from these data [3].

In this paper wc describe a system for automatically locating small volcanoes on the surface of
‘ Venus. The cataloging; al lc1 st,ucly of volcanoes on Venus is itself an important scientific problem, yet
it can also bc considered a typical instance of a common problem in image database exploration:
a user can identify a number of examples of an object of interest and would like the system to
automatically find and characterize all such objects in the image database. Our approach relies
heavily on the notion that the system is trainable and can learn a detection model from the
identified examples. Mre view this as being far preferable to the pritnary  alternative which would
be to program a sl)ccial-l)urposc  model for each object. With the trainable system approach, a user
can modify the clctcction model at will in an interactive nianncx  by identifying specific training
examples of interest in a natural manner. Thus, the benefits ale clear. Whether the trainable
approach is tcclmically  feasible is not clear: we will  return to this issue in Section 8.

The main issues discussed in this paper are:

Q l’hc collection and handling of training data from the users

● The implicit subjective nature of image labellil~g  by human experts,

● The evaluation and comparison of human and algorithtn  performance in the absence of abso-
lute ground truth.

● The technical issues of detection, feature extraction, and classification which are critical to
dcsignin.g trailmble  cataloging systems.

Each of t hcsc issues is cl ircct ly relevant to tllc problem of creating digital image libraries from raw
itnagc data. In l)articularl  Tvc foclls  on the problem of converting, original image data into digital
catalogs wllicl~ ljrovidc a high-level link to tllc origi]lal data for access and exploration.

The paper begins l~y discussing rclcvallt prior work on tile detection of natural objects in
remote-scrlsing inlagcry  (Section 2). Section 3 clescribcs  the Magcllan  mission to the planet Venus
and provides more motivatiol~  and detail about the volcancl  dcteciion  problem. The nature of the
Magellan  ilnagcs is discussed ill Section 4. Section 5 describes how the training data is generated and
focuses in particular on the problems associated with not having absolute ground truth. In Section
6 a three-stage volcal~o  dctccfion  systcm  is ilitroduccd  and clescribcd  in some detail. Experimental
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rcs~llts  ar(~ lJrfw~llt  rcl ill S(~ct iol) 7, Ivl)cre tllc volcano  (Ietcction systcln  is quantitati~w]y  evaluated
with rcs]wc~ ( o II(III Ialt  (lc( cc( ion jxvfim]mncc  on se~.(’ral  test sets of Magellan images. Finally l

Section 8 discusses t lie lCVSO1lS  l(wrllcd from this project and tlmir relevance to more general digital
ilnage lil)rary ])rol )1(’IIIs.

2 Prior Work on Detecting Natural Objects in Remote-Sensing
Data

]’rior Tvork ~lsill~  IMitt crll l((OR1 lit ion \vit 11 relllotc sensing clata lms largely focused on earth-based
data and tllc (’lassificatioll  of lIolnogcllcous  regions into vegctaticm  ty~)cs (for example) [4]. Most
work 011 tlm (Ietectioll of (J1 ),jects  ill relllotcly-sensed  data has largely been  limited to the detection
of l]lalk]]laclc  ol)jm!s  \vit  1) Ivcll-(lcfincxl  edge characteristics. II)clecd  ill an overall sense there is little
prior  work 011 (lie cIrtcr( ion of lllllltil)lc  natural objects in a noisy clwironnmnt  - many techniques
illll)licitly  assu~i]c tlmt t Ilr ol)jcct of il]tcrcst has alrcad~  been located ill the image and focus on the
l)roblcln of fil](lin~  ~ood (liscril)lina~lts  to  con]parc ol)~cct hypotllcses, Hough transform methods
llavc I)CCI1 IISC(l  ill tllc Ixwt fin cl(:[ccfio~l  of circular geologic features ill SAR data [5, 6] but without
great success. 111 tlic particular co~kcxt of tllc vcdcam) detection problem, Wiles and Forshaw [7]
{lcscribcd  a nmtcllc(l  filtc’rillg  al)l)roacll  for clctcction  of small volca]lom  in the Magellan  data, In
Section 7 \vc ~vill sw tl]at, ~nat(l)c{]  filtcril]~  alo]]c appears insufficient to achieve high detection rates
for Lllis prol>leln. NTotc  also t,ll:~t  tllcsc lncthc)ds  involve relatively little, if any, training based on
expert-sulq)lic(l data. In contrast, the a])proach proposed here emplmsizes the notion of a trainable
systcl]l ~vllicll  t l]c lwr c:~n cllstomizc at will by providing specific examples of the object to be
dctcctcd.

I’roblcnls  with many similar clmracteristics  to the volcano problem occur in medical diagnostic
imagin~, for example  alltOnlatd analysis of tissue abnormalities in pat]lCdOgy or detection of tUmOrS
in llla ~l]etic  resollallcc il]l<lgillg.

$/
]n gmlcral  t hcsc methods take great advantage of the fact that they Z-

are ill olltrol]cd  cllvirolllnrl~t,  and,  lmlcc,  can usc a clearly contrasting background with reference A
poillt,o  ‘J’llis  lca(]s  to a ]]lIIc1l lli~hcr  effcctivc  signal-to-noise ratio than one encounters in the Venus
volca]lo  illl:lgcs.

3 Venus volcanism

3,1 13ackground  on the Nlagclla  Mission to Venus
.,.] -,[A, {, l?~~3

t
On May 4t}{~<J89&t11c Niagcllan  sl)acccraft was launche(l from Earth on a mapping mission to Venus.
h4agellan  dtercxl’  all cllil)tici~l  orbit, aro~llld  Venus in August 1990 and subsequently transmitted
back to I’;art]l  l~]orc  data than  t@t frcml all past pla)lctary  missions combined 8]. In particular,
a set of :ll)l)roxilll:~tcly  30,000?  1024 x 1024 pixel [, synthetic aperture radar SAR), 75m/pixel  A”
resolution ilnages of tile l)lallct’s  surface WCIC transl)littedfiy csulting  in a high resolution map of
97% of tlm sllrfacc of Venus. ‘1’hc total  conhincd  volume’ of prc?-Magellan image data available
froll~ v:lrious  lxu+t  IJS and  USSI{ slmccm’aft  aIId groulld-based observations represents only a tiny
fraction of the h4agcllan  data set. ‘1’1111s, the Magellan mission has provided planetary scientists
~vith a]] I]]JI)I(:cc(l(I]]tccl  (I:tt,a  set for ITcllus scicncc  analysis. It is a~lticipated that the study of the
h4agcllan  datasct will continllc wdl into the ]Icxt century [1, 9, 10].

Tile Magcllall i]llagc  dab+’t is :L ulliquc tcstbed  for prototyping  digital ixnage library tools: it
is of significant scientific importance, it is large enough that automated and semi-automated tools
arc essential if CVC1l a fraction of tllc data is to he utilized, it has an enthusiastic user community
(l)lallctary  geologists) who are ready to use t hcse tools, and it colkains  significant technical chal-
lenges  in t crllu+ of ]mtt[]l~  rcwx)gllitio~l  and i]nage all; LlysiS  (as we shall see in more detail in this
paper). All tile scientific data froln t Ilc mission has hen publicly released by NASA in digital form
011 CD-l{ ohJIS (~lls~lrill~  ~~’iclcsl)r(’a(l  ]o~v-cost  access. ]n Appendix 1 wc describe how the data used
ill tllc exl)(’ril]lclits  ill ll]is l):LI)(I1  c:~ll  bc obtaillcci.
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3 . 2  TIIC Scic]]tific  T]nportancc  of Venus  Volcanism

l’]~c location, i(ic!lltific:itic)ll,  al)d cataloging of volcanoes are key conl~)onents  in the study of Venus.
‘J’o qllotc Salll)(lcrs  Ct al [s]:

Vol(allislll is tllc Illost Tviclcsl)rcacl  al]d ilnportal,t, geologic lJltcnonlcnon  on Venus, Vol-
cal) ic feat~ues are broad] y distributed globally, unlike plate boundary concentrations
ty])ical  of Eartl]. ‘J’llc lnost \vi{lcslJrcad  t crrain  tjpc on \rClIllS  is ]owlancl volcanic plains.

Llllclc)st,:tllcli]lg  clustering c]]aractwistics  and t l]e global  clistribution of the volcanoes is fundamental
to ~~ll(lcrst[~ll(lil~g  t l~c rwgiol~al  :Ll~d  global geologic evolution of the ~)lanet  [3], Generating a compre-
hensive cata]og  incllldins  the size,  locatiol] , a] ]d other relevant i]lformat  ion about each volcano is
clearly a prc-rc(lllisite  fbr lnorc adwuiccd  studies sucl I as cluster analysis  of the volcano locations,
“1’llis catalog caxl pot,elltially  provide tlw data necessary to answer }xrsic  questions concerning the
Kcophysics of v(’~l~ls, ~~llicll is of’ l):lrti~lll~r  int(!rcst  si~l(e  geologically,  Venus is Earth’s sister planet.
‘J’yl)ical  ~eol)l lysical qucstio]  1s about Venus volcanism concern eruption mechanics, the relationship
l)ctwecn volcal~oes  a]l(l  lo(al t r(t ol]ic str~lctutc,  and tile pattern of licat flow within the planet.

Gcolo8ists estimate t]lc III]) nbcr’ of slnal] vo]canocs  (diameter < 15km) on the planet  to be
w 106 [II]. ‘1’]ICSC l,olCall(WS  al( t llo~l~,llt  to bc widely scattcrwl  throughout 30,000 lMbyte images.
Manually  locatirlg tllcsc \Folcanoes  is simply Ilot  feasible. We have tyl)ically found in our experiments
that humans t e]ld to fat igllc qllicl;ly  after labc]ling on the order  of 50 or 100 images over a tilne-scale
of a few days. ‘1’lius,  large-scale sustail~ccl  cataloging by geologists is Ilot realistic even if they could
devote tile IwccIssary  t,imc to this task. In this context, an automated system for the detection and
catalogil]g of volcal mm lms considerable ut ilit-y.  From a more general digital library perspective we
arc targetill~  tllr alltlolnat,  ion of tllc cxpellsivc and ol~crous catalogil)g step which is necessary to
turn to a collcctic)li  of ilnagcs i]ito an indexed and accessible cligital  library.

4 Magcllan  Imagery

A fundamental ol),~cctitc  of tllc L4agcllan  nlission was to provide global mapping of the surface of
v~~],,s ‘J’]]c  ]]]al)l)]]]g  ~~’as l)crf’orll]cd usi~lg  synthetic :Lperture  radar (SAR) because of its ability
to ~)clletratc tllc dellso clolld cover surrounding Venus. The wavelength of the radar was 12.6 cm
corresl)o]ldil]g to a freqllellcv  of 2.385 GIIz. ‘1’he  inci(lcnce  angle varied from 15° to 45° and the
lllllnbm of 1[)01{s ~raricd frolll ~ to 16. Bccausc tllc number of looks is relatively high this results in an
cf[cctive averagillg of tl~c spccklc noise which is comm(mly observed in SAR images: consequently
tllc ]Ioisc ill tllc hlt~gcllan  illltigcs  is closer to the stan(]ard  additive white noise typical of optical
ilnagin.g.  A co~lil)lctc  (lrscril)t  io)i of tllc h~agcl]an SAR imaging systcm  is given in [12].

A stmldard  llagclla~L  illmgc consists of 1024 x 1024 8-bit pixels, where the pixels are 75111 in
resolution for tllc results refcrrml to in this paper, S] nail volcano diameters are typically in the
2- 3knl ral)ge, i.e., 30 to 50 l)ixcls  Tvidc. Vole.anocs art often spatially clustered in volcano fields.
As a COllSC(lUCllCC, lnost of tlie volcanoes are expected to be fom~d in about 10-20% of the total
n~lnlbcr  of illmgcs,  and  ~vitllin  tllcsc images there may number as many as 100 or more volcanoes,
although t,yl)ica]ly  the n~lnlbcr is in the 10-50 range.

k’igurc  1 sholvs a 30kln x 30k]11 area imagccl  by Magcllan (illuxnilmtion  from the left). This area
located near (lat 30”N, lon 332°) col~t,ains  nla~l~ small volcanoes. Observc  that the larger volcanoes
in this figure have t,llc  classic raclar signature one would (’xpect based on the topography; that is, the
upward slc)ping  surface of tllc volcal]o ill near-range (close to the radar) scatters more energy back
to tllc sensor t]lan tllc sumolulcling  flat plains and therefore ap~)ears bright. The downward sloping
surface of t llc \’olc:L]Io  ill far-range  scat, tcrs e] lcrgy a~vay froln the sensor and therefore appears
dark, Toget,llrr, these c[fccts ca~lsc t l~c volcano to appear as a left-twright bright-dark  pair within
[a circular  l)lal~ill~ct,ric  oLltlillc. Xcar tllc cc]ltcr of tllc volcanoes, there is usually a summit pit that
ap])cars  as a dark- bri.qht ] mir because t llc radar energy backseat ters strongly frotn the far-range
rinl. SInall  I)its, lw~vcvf~r, !nay Ilot  aI~I)car or lnay appear as only a bright spot due to the image
resolutiol~.

Tile to])[)gr:tl)lly-ill[  lllc((l fcatrlres dcscribcd  above are the prirna~y visual cues that geologists
report Ilsillg  to locate  volcanoes. 1 low’ever, there are ;L nurnbcr  of other, more subtle cues. The
al~lmrcllt  1 )rigl]t,ll(ss  of’ i~]i :Lrc’;L ill a radar  illlagc dcpcn<ls not only OIL tl~c macroscopic topography
but also 011 t,lle  s(lrfacc rotlgll])css  lclativc  to the raclar v,’avclength.  ~.’ilus,  if the flanks of a volcano
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Figure  1: Magcllxn S<\l{ sill>-ilna~c: A 30kn1 x 30km region colkaining  a number of small
vokanocs.  l}]umillatioll  is froln t]lc left;  incidence angle w 40°.

have different rougl)llcss  lJropcrties  than tllc surroundil]g  plains, tile volcano may appear as a bright
or clark circular area illst(~ad  of ;Ls a l.)rigllt,-datk  pair. Volcanoes nlay also appear as radial flow
patterns, texture difl’ercnccs,  or {lisr{~pt,ions  of grabcn.  (Grabcn  a~c ricigcs  or grooves in the planet
surface,  wllicll al)pctil as I)rigl]( Iillcs  ill t,llc radar ima~;cry  -- sec l’i~,ure 1,)

5 obtaining a I,abdd Training Database

In the volcano-location l)roblcn~,  as in nlally  remote sensing applications, validated ground truth
data does not exist. l)IIc 10 t I)c surfam  temperature of 482°~  no remote landers have visited the
surface of VcIlus almrt  from a l{llssian  robotic lander which melted  within a few minutes. Despite
the fact that tlllc fifagcllan data is the best imagery ever obtained of Venus, geologists cannot
always dctcrminc  \vitll  100% ccrtailky  whether a particular image feature is indeed a volcano. This
inl)crcnt  ambiguity is duc tc) factors such as image resolution, signal-to-noise level, interpretation
of tllc SAlt imagery, all(l so fort 11.
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Smple Volcawes

Cmgory 1:

cmgory  2;

Ca(egory  3:

Cwgmy 4:

Figure  2: A selection of local regions as labeled by the geologists and their respective categories.

5.1 Volcano Categories

‘1’here is considerable subjective variability in volcano labclling: for the same image, different
geologists lwoducc difkcnt  label  lists , al ld even the same gec)logist  produces different lists over
time. To liclp quantify this uncertainty, tllc gcolo~;ists  label training  examples into quantized
probability bills  or “categories, ” wllcrc t hc probabili~  y bins corrcsl)ond  to visually distinguishable
sub-categories of volcanoes. In lmrticular,  5 categories arc uswi:

1.

2.

3.

4.

5.

lhc

where a sutnmit  pit, a l.)ri~llt-darl:  radar pattern, and al J1mrent  topographic slope are all
clearly visible, probability 0.98,

.

where only 2 of the 3 criteria in category 1 arc visible, probability 0.80,

where no summit l)it is visible I)ut there is evidence of franks or a circular outline, probability
0.60,

where only a sumluit  pit is visible, probability 0.50, a~ld

where no volcauo-like features arc visible, probability 0.0.

wobabilitv  for cate~ory  i corresponds to the I ncan probability that a volcano exists at a
particular locaiion  givenl&  it bclonis to (:ategory  i. These are subjective probability estimates
and were clicitcd  based on lengthy discussions with the planetary geologists. On average 1O$%O,  20~o,
40% and 30% of the volcanoes belong to the categories 1, 2, 3, and 4, respectively.

Figure 2 SIIOWS  solnc typical volcanoes from each category. The use of quantized probability bins
to attach ICNFCIS  of certainty to subjective image labels is not new: the same approach is routinely
used ill t llc cvaluat  ion of racliop,rap]lic  image c1 isplays to generate subjective ROC (receiver operating
characteristic) curves [13, 14]. All 1{()~ is lweful for diagnostic al)p]ications  since it displays the
full rallge of l)ossiblc  ol)erating  tllrcsllolcls  for a detcx.tor  (human or algorithmic). III contrast, the
more oft-qllotecl  prol)ahility  of classification error c] itcrion only represents a single point on the
curve (tyl)ically the l)oint  at which the tl~rcshold on the postxrior  l)robability  for deciding in favor
of class 1 of cac]l  class is SC( to 0.5).
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5.2 ]]a]l(]lill~ L a c k  of C~rOlllld  Trtlt]l

]11 1]1(’  :1]) S(’11{’(’  of :11)’iolllt(’  gl’(Jllll(]  hut]l,  t]l[! goa] (d’ a dC’kCtbn  s~stcln k kI k? ~$ (’Ompad](!
i)) l)erfOrIII:tI)CL> as ]msil )1(:  to t ]]e ~co]ogist’s  in terms  of labelling accuracy. Absolute accuracy is
IJot, II I(IiIs IIral)l(I for this I)1oI)1(I1]). Ilc]lcc,  tlic best an autolnatcd  detection system can do is to
mll(llat  (I t lir ~(wloxist’s 1)(’lforlll:lll(t”  - tl]is point  will bccolne clearer when performance metrics
arc  (Ii.wll,ssc’(1  l:itrr  ill t 11P l):il)IIr. ‘1’IILIs,  llldikc )nost  supmwised  classification problems, the class
l abe l s  arLI ill fi~ct s{ll)]wtive  cst illmtcs  of t llc true class lalwls as l)roviclcd  by experts  (in this
C:lsc, ])l; lll(’t  :11’y gw)k)~lst s). “I]lis i)lt.ro(lllrcs  t~vo inll>ortant,  issues to the t radi t ional  supervised
(tlt~ssili(iltioll  l)lwl)lclll.

5.2.1 Class  I,al>cl  Uncer ta in ty  During  ‘Traini]]g

‘1’lle  first issllt:  coll(t’rlls  tlic trailliug  phase of the supervised lcaruing  algorithm. Since the measured
class la] )CIS arc (ll~ccrt sill cwtilllatcs of tile true class labels onc can take this into account during
traillill~ {Isill:,  :1 st:uldtir(l  stiitisti(al  (Iecision  theory approacl]. It can be shown that this amounts
to w(’iglltillg  tllc cxan]l)lcs  according  to l)ostcrior  class membershiJJ  probabilities [15]: if an example
lias l)rol):ll)ility  0,8 of l)(lollgilly,  to class u] altd probability 0.2 of bc]onging to class W2 then the
exa]]]l)lo  c:i]l  l)r fract iol]al]y  assi~lle(l dllrill~  training t o each class according to these weights. In a
logistic l(~rcssioll  collt [XI o]le (iill  usc tllc l~ost  crier probability prol)abilities  directly as the target
Vallles. ‘J’lIe l)ractic~ll  issue is tlmt of clcterl]lining  tile postm-ior  class ~)robabilities:  humans are
xlot,oriollsly  ])()()r  nt l)mvidill;  amllrate estimates of subjective })robabilitics  [16]. In the case where
tjllere  is O1]CJ sc’~ of lal)e]s  l)cr inla~e, one ap]woach is to map tile cxlwrt’s  categories directly to
l)ostcrior  l)rolmbility valllcs a s  dcscribcd  above. Preliminary reslllts indicate that the weighted
al)~)roacl~ l)rovi(lc’s  1]0 (liscer~~il.)lc  ]mrfornlancc  improvement over tile non-weighted approach but
tllcsc results ~vmc lmsml on relatively small data sets [17],. For the case of multiple experts there are
[a variety of teclmiques  available in the statistical literature for com})ining  multiple expert ratings.
Wc llavc also exl)lorcd a rclativrly  si~nplc probabilistic model which results in a composite estimate
I)ascd 011 t ILC l<LI)cIs  flol~l cliffcrcllt  expmts  [18]. In tl)is paper we only usc the relatively simple
noll-~veigllte(l  llletlllod  for traillillg.

5 . 2 . 2  l’crforlnal]cc  l’;v;llllation  and Class I,abcl U n c e r t a i n t y

l’hc  scx:ol](l  l)rimary  isslle  raised I)y class label uncertainty is that of evaluating relative performance
of 1)0(11  II(lltla]ls  :1)](I al~olitl)lns.  If onc dots not 1U1OW what tile absolute ground truth is, how can
onc c~’<~llmtc’ tile ))crfbllnallcc  01 ~ll)y detector  (IJC it IJurnau  or algorithmic)? The answer is that
wllilc OIIC callllot ill ~c])rra]  evaluate  oi)soluie  cletection  pcrforlllallcc,  one  can  eva lua te  relative
(Ictcctioll l)clii~rlll:ll)cc, ‘llie gvlleml  approach we have taken is to evaluate the performance of
algoritlllns  a]]tl  lIIIIIIa II (x])(~rts  again.  st a reference lal jeling  proviclcd by another expert or set of
experts. l:or CIxa]lil)le  ~vitll  ttvo (Tx]jerts,  O1lC can compare both the algorithm and expert A relative
to tile l:~bc’ling  of cxl)vrt 11, or 11 and the algorithm relative to A, or A and B individually and
tile a]golit 11]]]  lclt~ti~’r to tl]e CO]lSC]lSUS  (,joillt)  labellillg  by A alld 13. Once again  one can use the
mtilnat,c(l rcfcrencc  class l)robabilities  to t\wi#lt the ] wrformance  criteria: if a detector classifies
a local region as a Tolcano a]l(l t hc region has a probability  of 0,6 (according to the reference
data) of I)cillg  a volcal]o, then onc colild weight the l)erformance  criterion accordingly, e.g., the
loss f~ll~ctioll ~vo~lld llsc t lle ~twigl]t  0.6 ill cvaluatillg  the performalice  [1 !S]. In this paper we will
ado~)t,  tllc sillll)ler  noll-tveiglltcxl  Incthocl  of pcrformalice  evaluatio~l  just as we will use the non-
~vcigl~tr(l t,roil~in~  classification t raining lnct,hocls.  We \vill sce later that the methodology of choice
for evalll:~tillg  rclatiw: l)erforlnallce involves variations of the recciw’r  operating characteristic (the
I{oc).

5.3 N4(!tl](){l()l()gic!s  I’or Collecti]]g  Subjective Label Information

l’artic.il)atil~~  in tlie tlcveloplncl~t  of the detection al~orithm  are lianetary  geologists from the
IIel)artllwllt  of C~cwloSi[i~l  Scicllces, Ilrown University. \Vc arc fortunate to have direct collaboration
wit 11 two llleli]bels of t l}is ~ro~~p who were also memb(:rs of the Volcanism Working group on the
hlagellan  Sciclm tea]n. \\’c \vill  refer to these geologists  as geologist A and B henceforth in
this lm~wr. IIot IL of tlwsv geologists have extensive experience in studying both 13arth-tmscd  ancl
l~lallc’tar~’  ~rolc:~llis]n  :I]lc1  I]:Lv(I l)lil  )Iishcd some of tile st audard  reference works on Venus volcanism



[3, 1 1], IIm]ce, tlwir  collective sul,,jectivc  opi]lio,]  is (mugh]y s*JcakilLg)  about as expert  as one can
find giv(~ll tl~c avaik~ldc  {Iata allcl  our currc]lt state of knowledge about  the planet Venus.

‘J’l]e st al~clar{l  lna)lll(r  ill ~~llicll JVC obtain labels is to have a labcl]cr interact with an X-windows
software  too] ~~’l]ercby IN> or SI]CI uses nmusc-clicks  to locate candidate volcanoes. Starting with an
i]litially bla]lk ilnage, tllc labcllcr  procccds to sequentially click on the estimated centers of the
Vol(’allo(’s, !I’]]c laljcllcr is (I]cll  I>ronll)tcd  to l)rovidc  a subjective label estimate from a choice of
categories 1- 4 as dmcril)wl earlier by default, locations which arc not labclled are considered
t o  llavc! kll)cl  ‘(5” (no]l-volca]]o).  Clearly it is possible that based on the visual evidence, for the
same local  ilnagc l)at,ch,  the saltlc  label may ]lot  be p] ovided by difk:rcxit  labellers,  or indeed by the
same lal)cllcr at ~lif[ercllt  t,ill~cs.  Ill addition  to labels, the labeller  cti]l  also provide a fitted diameter
cstixnate by fitti~lg  a circle to tllc feature. Figure 3 S}IOWS the result of one such label~ing.

After coml)lctillg the labrlli~lg,  the result is an almotation  of that image which can be stored
ill standard database format tllc unique lioy to tile image is a label event, which corresponds
to a lmrticlllar  lat,it~l(lc/lo~]git~~(lc  (to the resolution of the pixels) for a particular labeller  at a
]jarticlllar  t,illle (sillcc tlic salnc labellcr  may relabel an image lnultiple  times). It is this database
wllicll  ])rovi(lcs  t,llc  l.msic refcrel  ICC fralllcwork for d[!riving est imatcs  of geologic parameters, training
data for t l]c ]car] ] il )g algorit,lil  ] 1s, and rcfcrel Ice data for per forlnallcc evaluation. A simple form
of s]mtial cll]stcri]]g  is llscd to determine ~vllich  label cvellts  (from different labellers)  actually
corrcsl)ollcl  to tllc sa]llc geologic feature (volcanc)). It is fortunate that volcanoes tend not to
ovcrlal)  eac]l  other  s])atially al]cl thus maintain a separation of at least a few kilometers, and also
that (Iifrcrellt  geologists tcl~d to be quite consistent i)~ their centring  of the mouse-clicks --- mean
diffcrcllces  of abo[lt  2,5 l)ixcls  (Ihlcliclcan  distance) have bce]l found in cross comparisons of label
(lata  frolil  gcolosists  Ii and 13, ~vl]ich is rcasol]able cc)nsidering  the precision one can expect from
lnousc location on a scrccll. 1 Icncc, accurat c location of the volcanoes is not in itself much of
])roblcln. l’ig~lrc 3 slJmvs  the reslllts of a typical labeling session with a geologist.

5.4 V o l c a n o  lletcction  I’crfornlancc  of Human E x p e r t s

~’able 1 sllo~~s  tllc confllsion  nlatlix  bctw’cen  tile two ~,cologists  for a set of 4 images. The (i, j)th

Table 1: Confusion Matrix of geologist A Vs. ~,eologist  Il.

geologist A
I,abcl  1 I,abel  2 Labr]  3 Label 4  N o t  D e t e c t e d

gcwlogist 13

IJabcl  1 1(J 8 4 1 3
]Jabcl 2 9 8 c1 5 5
J,abcl 3 13 12 18 1 37
IJabcl  4 1 4 5 24 15

Not l>ctcctc(l  4 8 ‘2{) 16 0

clcnlc)lt of tllc confusion Illatrix  coul~ts the number of label events which correspond to labeller  B
~C!llCI’[itillg  l;lbCl  ~ tlll(]  ]tl~)Cl]C~ .1 generating lal)e] j, ~\hcrc both labels were considered to belong
to tllc salllc krisual feature, i.e., \vcrc ~~’ithin  a few I)ixcls  of each other. ‘1’hc  (2, 5) (or (5, j ) entries

Icount  tllc itlstallcm wll(’rc lal}cl]cr  1~ (or A) proviclcd label z (or j), but labcller  A (or B did not
l)rovidc aliy l:tl)cl- clltry (5, fi) is (lcfincd to bc zero. ldcally, the confusion matrix would have all
of its elltric.s  on tllc diagonal if both labcllcrs  agreed (completely 0:1 all events. Clearly, however,
there  is sllbstalltia]  disagrcclncl~t,  as judged l)y the nllnlber  of off-diagonal counts in the matrix,
For cxalnl)lc,,  label 3’s arc part, iclllarly  noisy, itl both “directions.” l,abel  3’s are noisier than label
4’s l)eca~we tllerc~  is Iws v:iriability in t,l]c appearance of 4’s conl~)arc~d  to 3’s (4’s are simple pits,
3’s arc less ~vell-(lcfillcd).  About  50% of the label 3’s (lctected  by either labeller  are not detected
at all I)y the otl~cr lal)cller.  On tllc other  hand, only about 10% of the! label 1‘s of either labeller
are lllissed  by tile otl}cr. ‘1’llis  llmtrix  underlines the inherent ambiguity present in this problem
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Figure  3: hfagcl]all SAIL ilnagc of Venus after  labclling by a gcolo~ist  showing estimated size and
locatliolls  of slliall  volc:t]locs.

CVC]l alnollg cxlwrts.  ‘1’l)~ls, it is ilnl~orta~it  to keep ill mind that succcss for this task can only be
measured ill :L r(~l:~tii’c ]I)allllcr: t rcati]lg onc set of labels as grouncl truth, one measures how well
the algorithmic detector comlmrcs to a hunlan  expel’t in detcctiol”l  performance.

6 Description of the Volcano Delxction  Algorithm

Ill this section,  \vc l)mtri~lc all ov(lvic~t’  of tilt:  algorit,llm  we have dcvclopcd for finding small volca-
I1OCS 011 VCIIUS.  \\Tc l]avc (Iccollll)oscd  tllc volcano detection prol)le]n  i~ko three sub-problems:

● l~clcclim~  of call(li(latc VOI(:111O  regions  in the original imap;e

● Ciassifimtion  of t lie CX1 ract c(l local feat urcs into volcano and non-volcano classes.

llIC  trallsforlnation  from lligh-clilllcnsional  pixel space to a 10WCU dimensional feature space
acllic~wl  by t 11P frat,llre  cxtrart ion stc]~ is c+scntial  {:ivcn that each volcano can typically occupy
llundrcds  of l)ixcls  colllbillcd  with tlic fact tlmt relatively few positive training examples (order of
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llunclrwls)  are available. ‘1’11(1s,  tlir(cl  IIsc of tlie ljixcls as input to a classificatioxl  algorithm is not
l]ractical  given tllc ratio of illl)ut  dilllcllsi[jll:llity  to tllc lIunlber of training examples, Experimental
results with a variety of fecxlfor~vard  nmwal l~twork  classification] ]nodcls verified this hypothesis
[20]. ‘J’llc training data were often linearly sel~rablc  i], pixel space, resulting in an underconstrained
trai)lil}g  l~roccdllrc  \Yllcl c the lILO(IC1 colll(l  lllcmorizc the t] aining data perfectly but generalized
poorly to unsmn  clata. .,Q+ &/L~ 4 [$_

‘1’lle  (Iet,ect,ion  step, ~r])ich localizes  the detector or focuses tl)c attention of the detection algo-
ritllll) ml a local region, is also clearly essential, as is t hc final classification step (since the point of
the cxcrcisc is to positively idel]tify  candidate volcanoes in a given i]nage). A high false alarm rate
at tl~is l)oillt  is acccl~tal)lc assulllillg tllc classification component can subsecluently discriminate
bctjwcell  true dc!t,ectic)lls  and false a]arlns.

‘1’rcat,lnmlt  of tllc tllrcc SU1 JI)roblcms  indel)clldent iy is suboptinlal  in general, Nonetheless wc
treat all tllrcc l)roblcms independently for the pragmatic reason that one can estimate the paranle-
tcrs  of cacll conlj)ollcllt  ill a rclative]y efficient manner whereas joint estimation of the parameters of
the dctcc.t,iol~,  feature extraction, at Id classification methods would likely be both comput at ionally
illll)ractic:d and rcqllirc lt]uc]l  larger trai~ling set sizes than w-e have available for this problem. We
llotc in ])assillg tl]at  tllc dccolnpositjion  of statistical pattern recognition problems into a 2-step
process, fwit,ure  extract,ioll follolvc(l  1 )y classification, has lc)ng bcel~ recognized as a necessary evil
in Inost practical ~)attcrn  recognition problems [21],

G. 1 Detection of Candidate Volcano Regions

TIM detection componmlt  is clmi~ncd to take an image m input and produce as output a list
of call(lidatc  volcano locations. A reasonable approach to detection is to usc a matched filter,
i.c ., a lillcar filter that llmtcllcs  tllc signal one is trying to find. For detecting a known signal in
white Gallssia~l  noise, tl~e matcllcd  filtering approach is optimal, Of course, the volcano problem
do(!s  ~lot satisfy these underlying assunlpt,ions.  The set of observed volcanoes cannot be described
-m a known signal plus white noise, because there is structured variability due to size, type of
volcano, sllrface rouglllless, etc. I,ilic\visc,  the clutter backgromld  cannot be properly modeled as
wllitc noise. N’cvcrthclcss,  ~vc lla~’c empirically found that the following modified matched filtering
al q]roacll  \VOrliS \\’cll.

IJct  vi de]lotc a k x k pixel rcgio]l around the i-th training volcano. Each region can be
nornmli7Jcd  with  respect to t l~e local DC lc~’el ancl contrast as follows:

vi -- /L~ . 1
+~ == -— ——_—

(72
(1)

wllerc  /li

matched
is the mean of tl~c l)ixcls in vi and ai is their  standard dcviatioll.  We construct a modified
filtm f l)y a~’crag;ing tllc normalized volcano examples in the training clata,

A l~j)lyillg  tllc inatcllcd  filter LO al] image involves conlp~~i~lg  the l~or~nalize~  cross-correlation of
f with (!acll  k x k image patch. The cross-correlation can be computed efficiently using separable
licrl~cl  lnetflods  to approximat,c  tllc 2-D lierne]  f as a sum of 1-D outer products [22].

IIigll response values indicate t bat there is strong (orrclation  between the filter and the image
l)atcll. A tyl~ical  filter allcl rcsl)onsc ilnagc arc shown in Figure ??. Candidate volcano locations
arc ldaccd  where the nlatchcd  fi 1 tcr response exceeds a threshold that is determined from training
images. Ally tl~rcshold  crossings witl~in  a prescribed distance frcun cacll other are attributed to the
salnc object ancl grouped together: the default, distance for the algorithm is 4 pixels.

Dotect,ioll  results on a tyl)ical  i~nage  arc shcnvn in Figure 5. The detected regions of interest are
dis~)laycd  as l)oxcs  overlaid on i] nagc, while the refcre~lce  label locations (according to a geologist)
arc shott’]1  [w circles. Alt,llougl)  tl~crc arc quite a few false alarms, recall that the goal of the matched
filter detector is to acllicvc  a low-nliss  rate while reducing the amount of data to be processed by
later  sta~es. ‘1’yl)icall~~ tl)e (Ietector is succcssflll  in detecting all the volcanoes from Categories 1
and 21 l)ut lllisscs  So]llc from Catc~oricx 3 and 4.

Altllo\@l  tllc matched filter can bc justified based o~t empirical results, we also offer the following
arg(ll]lcllts. l’irst,  tllc k x k ]villdcnvil~g  elilnilmtm some of the irdlerent volcano variability, especially
Lllat d(le to scale. l~oc~lsi~~~;  01] tllc cclitral  area of the volcano lnakcs tile volcano detection problem
]norc lili(:  tflat  of fill(li]lg iL lil]o\~]l  sigll:d  silicc tllcrc tends  to be Icss variability in volcano appearance
a t  tlic cmlter naturally, tllc disadvantage is that potentially  valuable information outside the

9



Respmc of h!atched Fiker

M,,(, kd F,)(u D,,,l,YcJ ,, S,,(.< Pkx

F’igurc 4: l,cft: ‘1’l)c Inatcl]ccl  filter contains ninny of the features that ~Jlanctary  geologists report
using w’lm~  manually 10 C~Lting  volcanoes. In particlllar,  the matcliec~ filter encodes a bright central
spot corresponding to a volca~lic summit pit and tllc Icft-to-right  bright-dark shading. Right:
I{cspolIsc  of tile matchecl filter on the area S11OWI1 ill Figure 1. 1 ;right points indicate a strong
match these will bc sclcct,cd  as carlcliclatc  locations,

k x k window is ignored. Second, ~~ormalizing  each i~llage  patch with respect to the DC level and
contrast causes non-descript  clut,tcr areas to resemble zero-lnean, white noise. Hence the filter
f should bc suitable for discrill]inating  tllcsc non- dcs(ript  regions from volcanoes --- the primary
purpose of the clct,cctor.  Of course, in regions where th~: clutter has features such as graben (narrow
ridge-like features on tl:c surface of VcnLls),  tllc ~natcl]cd  flltcr is not ideal and will produce more
false akmns.

6,2 F’cature  e x t r a c t i o n

Since t}lc regions of interest (llOls)  ide~ltificcl  by the detector arc eIllbcdded in a high dimensional
pixel space, the set of possible features is immense. In the :csults  reported here we restrict our
scarcll to the fmnily  of feat,urcs defined by linear co~nbillatiom c)f the 1{01 pixel values. This strategy
is cquivalcllt  to l)rojectillg  t llc ~~-dilncllsional  l)ixcl  sl)acc onto a q-dimensional subspace  (feature
space) .

The Inctllod  of lJrincipal  colnponcnts  has l)ccu used cxtellsivcly in statistics, signal processing
(l<tLrll~llLcI1l-l,ocvc  tral]sf’orlll),  and pattcrll rccogllitioll (Turk and Pcntland [23]), The problem
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FigulC 5: ‘I’l Ic oll~l)llt  o f  [I]c ]ll:~tcllml  filtm LIctcctor  o n  a ty])ical  iIIla~)c!. Circles show the consensus
ground truth VOIC:LIK) locatif)l~s,  ~vl~ilc  Ijoxcs  sllo~l’  the candidate regions sclcctecl  by the matched
filter dckcctor. ‘J’I1[Is, circlm \vit  h l)OXCS arc d(tcctcd ~olcanocs.  Circles without boxes are missed
VOICallO(X and  l)OXC!S Writllollt  Cil’tics :~r’c fd]sc  alar Ills.  $+incc t]l(!  Illatc\lcd  filter acts as prescreening
for other  stages, the cost of a n)isscd volcano is high compared to a false alarm.

fOllIIUlatiOll  is to find a ~-dilll(’llsiOllil]  subs])acc  sLIch tl~at  the projcctcd  data iS closest in 1J2 norm
to tllc original  data, ‘1’1 ic subspacc  NC seek is slxmned  1 )y the lligllcst-eig(!rlvallle  cigenvectors  of the
data covariallcc lnatrix. Alt lIOIIP,ll  t IIC f~lll covariaIlcc  ~l]atrix  cannot bc computed reliably from the
llulnbcr  of ex:LInl)lcs  \ve tyl)ically  have available, the approxilnatc  basis vectors can be computed
usil]g the sillgulm value (Iccolnl)usit  io]l  (SW)) as clcscribcd  below,

Each  Ilorl]lalized  training volcano is rcsllapcd  into a vector and ~daccd as a column in an n x m
matrix X, ~vllcrc  IL is tlic ]iu])]b(’r  of pixels in all 1101 and m is the I)linlber  of training ROIS which
collt, ain volcullocs.  \\~ii,ll  tile SVIJ, <Y call  be factored as follows:

For notatiolml  collvcu~icl~cx:,  ~vc ~vill  ass[ln~c TIL is less than n. Then  in Ecluation 2, U is an n x m
nlatrix  SLICI1 t,llat, LJ7’[J  = I ,,1 ~ ,,,, S  i s  l)? x  7rt  ailcl d i a g o n a l  w i t h  t h e  clmncnts o n  t h e  d i a g o n a l  ( t h e
sillg~llar  \dUCS) ill dcsccllding orclcr,  a~ld v is 771 x m with V1’V == VV2’ = Ir,, X,n. N o t i c e  t h a t
any colun~~)  of X (eq~livalcnt,l~~,  a]~,v 1{01) can bc written exactly as a linear combination of the
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colun~tls  of U. l’urtl~crlnorc, if tl~c sil)gular values  clccay quickly (’nough,  then the columns of X
call lJC (loscly :~l)])r(>xilll~ttc[l  llsillg  lillcar  collil)illatiolls  of only tlw first few columns of U. That is,
tlw first f(!w colulnl~s  of U serve as an ap])roxilnate  lmsis for the eliirc set of examples in X.

Tllc l)cst, q-clilnel)sional  subsl)ace on wllic]l  to prc),jcct  is the onc s]mlnecl by the first g columns
of U. ‘1’lw colulnns  of U are S11OWI1  ill Figure 6-1> reshaped into 1{01s;  wc refer to these as features
or tc]ll})latc’s.  Notice t hat  tl~e first t cn tcnlpl:ltc!s  exhil~it  struct  me wllilc the remainder appear very
ralldolll. ‘1’llis suggests l)rojcctillg  onto a subspace  of dimensio~l  ~ 10. The  singular value decay
sllotvll  in Fig~lrc 6-c also ill(licates  that 6 to 10 fcalures  ellcoclc  Inost  of the information in the
exam ])k’s.

Ilavillg det,erlnillcd  q, \vc ]]rojcct an ItOI  into feature spaceas follows:

[ 1
T~= u 1 11~ . . . Uq x (3)

where x is tlic 1{01 rmllal~c(l  as all T~-clilIlcJllsi(~l~al  vector of pixels, Ui is the i-th column  of U, and
y is tllc q-clilllcllsiolli~lv(:ctor  ofmeasurcdf  caturcs. ‘l)hese  feature vectors will serve as input to the
classificatio]l  algorithln.

6.3 Classification

(JI) to tl~is  ~)oillt in the l)roccssing, we have cschelved using co~ll]tcr-exa~~l~]les  for training (the
dctcctioll  filter and I’CA f’caturcs  Ivcrc cletcmoincd  solely based on volcanoes). The classifier could
also be dmigllcd  this way, 1 ~llt as shown in [21] such an algorithm is subject to considerable error
cvcll ill relatively low dimcnsic)ns  because tllc! location of the “oth~!r” distribution is unknown. To
overcolllc  t]] is prol )lcm, Tvc have cxpcrilncntml  witli various supervised two-clam methods including
quadratic classifiers, decision trees, nearest ll(!ighbors,  kernel density estimation, and feedforward
llcura] nctwrorli models. Very similar results were obtained with all of these methods, hence, the
qua(lrat,ic clnssificr  is favored duc to its simplicity,

‘1’11(!  qlladratic  classifier is optimal if the ckass-collditional  probability densities of the feature
vector  y arc multivariatc  Gaussian. Assuming  y has the postulated claw-conditional densities, the
l)osl,crior  prc)bability that an 1{01 is a volcano can be estimated using Bayes rule:

p(ylv)p(v)
p(v]y)  = — —-–-

p(yp)p(z))  + ]J(ylu)p(il)
(4)

I wllcre ;)(v) and IJ(D) arc tllc rcsl)cctivc l)rior  I )robabilitics, and

I

with tl)c! notation  AJ(y, iL, .X) de~lotillg  tllc m~lltivariatc Gaussian density with mean /L and covari-
ance X. Onc can show that tl~rcs]lolding  the l)ostcrior probability in Ecluation 4 is equivalent to
]Jartitiolli]lg I,]lc feature sl)acc \vitll  a fluadratic  hypcrsurface.

I 7 Experimental Comparison of Human and Algorithm Detection
Performance

I In this section, we prmellt  tllc cxpcrimclltal  results’ ol)taincd using our algorithm to locate small
vo]callocs  ill hlagcllall  S~\It iloagmy. ‘~llc l)crforn~allce  of the algorithm in the volcano-location
task is col)lparcd  to tllc l)crforlna~lcc  of individual geologists, relative to a set of reference labels.

I 7 . 1  ItoC Mcthoclologies for Pmfornmncc J;valuation

In its silllplcst forlll the ROC I)lots  CIctcctions  (tllc systenl/human  detects an object at a location
wllcrc a volca]lo exists iiCcor(li])~  to tllc  rcfcrcncc list) versus false alarms (the system/human
detects all ol.)jcct  where 11o vol(a]lo  exists according t<} the reference list). For a detection system

12



S,n:uld Vdlua

lir  !- ,-  - T – - - r -  - - r  -V—T--,

,U(: ,_ ,. . . . ..— .L  L.....

10  N 3(I 40  50 m 70 ~

Figure (3: (a) ‘1’he collection of volci~nocs IUSCCI  for feature synthesis. (b) The principal components
derived frolll tllc cxanll)l(~s.  (c) ‘III(I sillg~llar  values  indicate  the ilnportance  of each of the features
for rc~)rcscllting  the exanil)les,
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Figure 7: l“ROC ccnnparing the clefault algorithm a]lcl the geologists based on cross-validation of
4 homogeneous images, using the consensus labeling of the 2 geolc)gists  as reference.

which lJroduces ]Josterior prol )abilit  ics (such as the Gaussian classifier of the previous section), a
scqucmcc of (lctcct,ioll/false-alarl~l points can be plotted from the test  data by varying the posterior
probability tllrcsllolcl  at which a test region of interest is classified as a volcano.

Ordinarily  tllc nlaxilnunl  number of possible false alarms is fixed in the ROC context and thus
tllc x-axis corrcsl~ollds  to the ~)robability  of clctecting [L false alarm. ]n the detection of objects (such
m volcanoes) in a set of images, the maximul n nurnbcr  of potential false alarms (all pixels not close
to the object) is not well-defined. A practical alternative to the standard ROC (plotting detection
rate versus false alarm rate) for cases such as this is the so-called “free-response” ROC (FROC)
[24] which plots the detection rate against the false /ilarm rate per unit area. In the experimental
results described in this paper wc usc the PROC  nlcthodology  whcrw the x-axis corresponds to
false alarlns  l~cr square  k m . It is iml)ortant, to note that the I’ROC can not bc analyzed in the
sanlc manllcr  as tllc IWC:  for example while the area under an ROC curve can be interpreted as
a measure of the quality of the clctcctor there does not exist an allalogous quantity for the FROC.

7.2 Ex])crimcntal  Methodology

The cxl)criments  dcwribcd  1)C1OW were conducted usi] lg cross-validation: the algorithm was trained
on traillill~  ilnages al~d evaluated on a disjoint set of unseen images, and the process repeated over
all such training/test pairs of sets. The exact data (llamcs of the training and test images m found
on the l)ul~licly  available CD-ROMS) for each exl)eriment  are listed in Appendix 1.

‘1’railling  consists of a 3-step process bad on the training ixnages:

1.

2.

3.

Construct tlm detection filter using tllc vcdcarlocs  in the training images (according to the
refcrcmcc labels for the training images).

Det,ermi]lc  the principal component directions from the volcanoes in the training images
detcctcd  in step 1.

l;stilnatc the parameters of the Gaussian classifier, using the features from step 2 evaluated
01] all of tllc l&al  rcgio]ls dctcctcd  in the training data ~y step 1.

TIN dcfalllt  settings  for algorithln  parameters arc d[scribed  in Apl)endix  2. In general, algorithm
detection l>crforlna~lcc  has been found to be relatively insensitive to the exact values of these
parameters: experimental rcwllts on parameter sensitivity are reported in Section 7.6.

7.3 Experimental Results on A Small  Sel of Homogeneous Images

14



111 ljrevious work ~~c llavc  reportccl the results c)f l)rcliminary  cx~)crinlents  using cross-validation
on four i] nagcs tlmt  collt ainml 163 small volcanoes and covered a 1501{111  x 150knl area of the planet
[1 7]. ‘1’]ie IPROC Ics(llt is S11OWI1  in Figure  7. All r(>sults  were scored relative to the geologists’
CO1lSC]]SUS  labeling with coilfidcncc  categories 1-4 treated as true volcauocs, l’hcse  4 images were
located rather C1OSC  together, a factor whose importal)cc  will bcconlc inlportant  as we proceed, For
tllesc 4 ill]agcs tllc (Ictcction l)erfor]nallcc of tllc algol  ithm is quite close to that of the geoogists.

7.4 IJx])eri]nental  Results on a Large Set of Homogeneous Images

‘1’IIc SI1l:lII  SCL of’ 4 illlagcs  dcscribcd  abow: arc pa]t of a 7 x 8 rectangle  of 56 images. Of these
images, 14 arc virtually completely blank clue to a gap in the Ma,gellau data acquisition process,
leaving 38 otllm (42 lnillus  tl~c 4) ilnagcs  to work with. Details 011 which images were used in the
expcrinlcnts  can bc foullcl  in Appendix 2. The 38 in)ages  contaim!d about 480 volcanoes in total
and  for cacll training/test Imrtitioll there t~crc roughly 400 volcanoes in the training image set and
80 in the test set. Tl]e ))crforlnancc  of the end-to-en(l  algorithm using the default parameters on
6 difIcrm~t  lmrtitiolis  of tl~is  3S ilnagc data set is shotvn in Figure  8 using the labels of geologist A
as the rcfcrellcc, and in l’igure 9 using the labels of geologist B. ‘I’l Ic solid curve is the measured
FROC  011 tile test set fo~’ the algorithm. The solid cilcular  symbol in each plot is the performance
of geologist, A (11) relative to tllc labeling of B (A). The “+” symbol is the performance of one of the
authors (MCI]). WC ]lotc that tile two geologists are olmrating  at diflerent  parts of the FROC curve
(colll~)arillg  t IIc l)lots  of l~igurc  8 and Figure 9): geologist H is relatively conservative relative to
geologist A. T]lc ~lon-expert, MCB, is quite C1OSC in performance to geologist A (Figure 9), tending
to have a somewhat lligllcr  false alarm rate and slightly higher detection rates. The performance
of tile algorithm is reasonable but not as accurate as the humans. In Figure 9 the algorithm is
bctwccn  10 to 50 ‘% below the detection accuracy of the humans at a fixed false alarm rate. Using
geologist A as rcfcrcnce,  the algorithm performs sonlewhat  better, being between 5 to 20% less
accurate in terms of clctcct  ion ] )crformance  (1’igure  8).

For a lmrticular  traiuing/test  partition we evaluated t}le performance of the matched filter
alone as a (let cctor  aud conlparccl  its performance to the matched filter combined with the feature
cxt ract ion and  Gaussian classifier (the default algorithm). The results are shown in Figure 10 in
the same I~IIOC format as before, The detector has a free parameter (a threshold) that controls its
aggress ivellms  ill dcc]arillg volcanoes, i.e., tllc tracle-off  between misses and false alarms. Varying
this parameter gcllcratcs  an F] tOC curve for the detector alone (}vit  bout the Gaussian classifier).
Observe that tllc colnbil)ation  of matclicd  filter and i:lassification  yields better performance than
usin% olily  a ll~atcl~rd  filter (tlse of a matched filter alone was proposccl  in [7]).

7.5 Experimental Itcsults on Inhomogeneous Images b ,%
In this CX1 )cril ncnt 36 images were sclcctcd from random locatio]  1s the planet. These 36 images

6contained si~llificautly .grcater  variety in shal)e, noisiliess,  and size t an the sets of 4 and 38 used
in tllc earlier expcrilncuts. There were about 670 volcanoes in total in the 36 images, with about
500 in tllc training set and 170 in the test set for each partition. Figure 11 shows the FROC
~)crforlnance  from 4 different l~artitions of the data into 27 trairlillg images and 9 test images
(details in Al)pendix  2). Clearly the system is performing worse t,lian  on the more homogeneous
ilnage sets. l’or example at tllc 0.001 false alarm rate/km2 the detection performance is in the
20-40% range whereas for the 38 homogeneous images the detection rates were consistently in the
50- G5%o range. ~~or this data set the rcfcrcnce labels arc coIEwnsus  labels (where geologists A and
11 joilkly  labclml  the images): for tl]e few inlagcs (of the 36) where we have individual labels in
additio]l  to tllc COIWC1lSUS labels, tlic geologist’s detection perforlnance  appears to be in the same
general region as it was for the homogeneous images. Thus, one can conclude that the volcano
dctcct,ioll  a])])roa(ll  does Imt lmudlc image inhomogencity  as well ass human experts. This is to be
cxl)cctcd  since both tllc l)rincil)al  components and Gaussiau  classification models are essentially
based  011 tllc assmnption  that the volcano I)opulatio]  L can bc described in a unimodal  fashion in
tcrlns  of l)ixcl  al)l~earanm and size, whereas with inho]]logeneous  images there may be multiple sub-
classes l)rcscllt. ‘1’1 lus, more conlp]cx lnodels are likely to be necessary to handle the inhomogeneous
ilnage case.
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7.6 Algorithm !%msitivity  to Parameter Values

I low dots tile i~lgolitllln’s  detection performance vary if the various paralneters are changed? Ideally
onc would like a relatively stable operating range so that the algorithm is not over-sensitive to the
exact valu(~s  of tllc parameters. WC do not inclucle  in this paper any sensitivity results on the size
of the clctcckion  or principal component windows or the detection clustering threshold or radius
of cletcctiol  1 parameters: t hc dcfaul t values for these ] )arameters  were chosen based on knowledge
of tile tyl)ical volcano sizes allci informal experimental results have shown the algorithm to be
rclative]y  illscllsitivc  to tllc exact values.

C)f greater illtcrcst  is the algorithm sensitivity to the threshold parameter used at the matched
filter dctectio]l  sta~e and the nllmbcr  of principal coml)oncnts  used as features for classification. In
botjl~  (: WCS l~clmv  tlie dctmtion  rate is cstilnatcd  as a f[lnction of the l~aramcter of interest for three
cliffcrcnt  false alarw rates. The three rates dmsen  were 0,0005, 0.001, and 0.002 false alarms per
kI n2 wllicl]  ro(l~lll  y corrcspc)nd  to t llc range of’ opcrat il]g points used by humans. For t hc purposes
of illustration tllc results below arc for onc particular train/test combination (combination (a) from
tllc l)rcvious section, train on 32 ilnagcs and test on 6). IIowcver  similar qualitative results have
bccm observed across a variety of training and test image sets for both of these parameters, In both
cases only t,ll(’  l)aranlctcr  of interest is varied ancl  tht’ other parameters are held at their default
values: ilwcstigations  into the multivariatc  performance dcpcndcncc  on multiple parameters was
not  feasible ~iven t llc alnount  of clata available for these cxpcrimcnts.

7.6.1 Sensi t ivi ty to Matched Fil ter  Detect ion Thresholci  1’arameter

Note that the operating detection rate from tllc mat(hed filter is necessarily an upper bound on
the dctcctioll  rate of classificatiwl  algorithm sillcc volcanoes missed at the matched filter stage are
missml forever. 1’1111s,  it WOUIC1 appear that onc would prefer to be at the highest possible matched
filter (lctcct iol~ rate. I Iowcvcr,  it is not clear whethc] a somewhat lower detection rate might be
better ill all ovcral]  sensr  sillcc tllcrc ]nay bc a ]IIuc1l  lorvcr  proportiol~  of false alarms for the cla.ssificr
to deal ]vitll  ill tlic f(’atllre space.

III 1+’igllrc  12 tllc detection rate of the classifier is plotted as a function of the matched filter
tllresll[)l(l,  for tllv t llrre diff’crcllt fixed false alarm rates. In the 0.3 to 0.45 range of operation,
pcrforlllallcc  a])]wars somewhat sensitive to the exact  value of the threshold, but nonetheless this
aI)pcars  to tllc’ ol)tiln:d ol)eratillg  range. If tllc tllrcsllold is below 0.3, t}~e detection rate tails off
bccausc  altlm~~~ll  tllc (let ector  is (Ictccting more true volcanoes this is traded-off with the fact that
it is d(!tctt iug OMICM of IJmgnitudc lllorc false alarms. ‘J ‘he increase in false alarms has much more of
all cfIcct, ill terms  of filml classification than tllc rclati~.cly small incrcasc in true detections. Above
0.45, {Ivcn  tlloll~ll  tllcrc arc fewer false alarms clctecttd,  there are too fcw volcanoes detected by
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tllc Ilmtcllcd filter, and thus tllc overall detection performance of tile algorithm is upper-bounded.

7 .6 .2  ScnsiLivit-y  to Number of Principal  Conlponents

The default algoritllul  uses tllc first 6 principal COII Iponent as features: the number 6 was chosen
as a trade-off between  rctaiuillg  a certain munbcr  of the more informative principal components
and kecpillg  tllc feature space dimcnsionality  low. Figure 13 shows how the detection rate varies
for cliflcrc~lt  llunlbcrs  of Ixincil>al components, for tllrce differe~lt  fixed false alarm rates. Apart
from a nlatli(:d  dccrcmsc  ‘in dc~cction  ::atcs mice the number of features goes below 4, dcte&ion
l~erforlllancc  is rclat ivcly  constant over tllc r(’st  of th( range.

8 Lessons Learned with Implications for Digital Image Library
Applications

8.1 ‘rllc Fcasibi]ity of Lemming fro~n Pixel-Level Descriptions

Wllilc it is al)l)caling to consider a user pointing  to a few exanl~)les  of interest and having the
systclu  tlle]l kmrII  a detection lnodcl, such a “bottol)l-up”  approac]l  based on learning alone may
not scale \vcll to difficult p~oblcllls. As poi~ltccl  OU1 in the paper by Gcman,  IIiencnstock  and
Doursat  [25], an algorithm which learns fronl pixels alone is operati~lg  in such a high-dimensional
slmcc  tlmt  statistical cstimatic)ll  tl)cory l)rcdicts that prohibitively large amounts of training data
arc rcquirccl  to rcclucc the variance of the cstilnatcs,  i.e., to construct an accurate detection model
from data. Tllc atltllors  conclude tlmt the Iwc of al )propriatc  l)rior  knowledge embedded in the
model is the only l)ractical  way to circumvent this l)roblem. ]n eff’ect,  the principal components
Inctllodolog-y (Iescribcd earlier embodies a lilnited  fol m of prior kl}owleclge  in the form of a belief
that tllc volcano population can be described as linrar  combinations of a few “basis” volcanoes.
1 Iowcvcr, tile I)erforlnancc  on the inhomogc~lcous  image sets SIIOWS  that this particular prior bias
may lx: illi~lJ1)rol)ri<~t(:  for the more gc]lcral  volcano detection problem where sub-classes of volcanoes
may be ])rcsc]lt.

{)]] the otllcr  hmld it is difiicult to see how a purely model-based, non-adaptive approach could
wwrk for :1 ])roljlrl]l  of this nature. TIIC Geologists provide descriptions of the visual cucs they use
in detecting  volca]loes  SUC1l  as “bright-dark lmirs, ” “(ircular  outline, ” etc. glanslating  these high-
lCVC1 descriptions il]to pixel-level constraints is virtually impossible since standard shape extraction
lllet,llo{ls  1 )ase(l 011 c(lgc and seglllellt  illformat ion arc not well- matcllcd  to noisy natural images such
a.~ tllC  volc:ulo (Iata.
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‘]’bus, a l]licldlc  ground  Ijctlveell  tllc model-based and lcarniug  approaches appears likely  to be
the lnost  I)ractical  air(’llllc  for l>llilding  aut onlatecl  recognition syst cIns for dataswts of this nature.
111 problvllls lvllcr~’  (11(’ feature defil]itioll  probl(!m can be solved Ul)f’milt by the user, the recognition
rates arc tyl)ically ]~]llch lligbcr (e.g., [26]). For lllore general and difflcu]t  problems, an interactive
ca]d)ility for feature dciillitioll iuvolvil]g  I)oth tllc expert  and tile ilnagc data is rec]uired.

8.2 Subjective l’;lcments  in I1nage Analysis

olIc of tile l)rillltlry  lcssolls  k!al’lld  f~onl  this projccf is the iml)ortance  of the subjective human
clclncnt  in lnode]  traillil]g allcl performance evaluation. Image analysis by humans is a subjective
1)1’occss. ‘1’lIus,  for I]uuly digital library tasks wlwrc t hc quality of the result is subject, to human
ilkerl)retation  it is critical that tllc sill.),jcctivc aspect of the! l~ro(t,ss  is taken into account. For
the volcano l)ro,j((t \vc llavc  prilllarily  adopted the sinll)le  a~q)roacl~  of fixing one expert’s (or set
of exlmrts)  suhjecti~’c  estimate as ground truth for each exl)crime]lt and then evaluating all other
csti~llates  a~:iillst  this r~’fcrcnce, I Iowcvrr this is SU1 )opt imal in t Ilc sense that in the worst case
onc exlwrt’s  ol)illioll  lni,g]lt bc ]Io better tlmn random  and pcrformanm  estimates using that expert
as rcfcrellce sl)oulcl receive  lmvcr weight. \l’[1  llavc  it lvestigat  ed sol ne probabilistic techniques for
modelling  lllultil)le  exl)mt opinions [18] and tlwrc is a significant bocly  of work in the statistical and
l)iolnmli(al literat~ll(’s  0)1 t,l~is tol)ic [27, 28, 29]. IIowever, since little or none of this work concerns
rat ing exl)crt  ol)il I ion based OIL IIZSUU1  stimuli there is clear] y roonl for much more work on this
topic given its flllldalncntal  iml )ortanc.c in problc.ms  i] ~volving  detect iol~  and cataloging subject to
Illl]nall  review,

8.3 Invariance issues

Dcsl)itc its illtllitive al)peal, t 1 ]crc arc a llulnbcr  of iirgunlcnts  against using the sort of simple
tc’ll~l~laic-}>:~sccl  al)l)roacll  for detection and catalogillg we have described in this paper. Most
notal)ly, tllc l)rolmscd )netllod is not invariant, with ~ mpcct  to trat)slation,  rotation, scaling, and
direction of ill~llllill:~tioll.  A certain (hopefully small) ~)unlber  of teml)latcs  will be recluired  in order
to rcq)rcsmlt t IIc illllcrellt  variability of an object; any additiollal  variability due to spatial shifting,
rotatiol],  scalil)g,  or noise will dramatically illcreasc the number of templates rccluirecl  to encode
tllc ol),jcct.  ]Jor cxa]nl)]c  tllc l~crformance  of the system was significantly worse on lCSS homogeneous
sets of t,railli~lg  :L]ld test il)lages (Figure 11). T]ius, the I cmplat  c-based al)proach  may not be feasible
u]llrss alq)rolmiate  normalization steps are tdi~n I)rior to feature learning. These invariance issues
need to b(! resolv(xl ill order to develop a general systel ] 1; however, for the volcano problem they are
not so critical sillcc (1 ) the dctcctioll  step effectively “centers” the volcanoes well, (2) the volcanoes
llavc significant  rotatiolla]  syln[llctry, (3) the central a] ea of tljc volcanoes (on which the templates
are bascxl)  are relatively illsclusitivc  to overall scale, a~]d (4) tile direction of illumination is known
and relatively (wllstallt.

NTotc that for gellmal tasks of cataloging objects in digital libraries consisting of uniformly
gatllercd  ant] l)rocesscxl  data (e.g., a fixed Lmnotc  sensing platfornlj  documents scanned from a
sillglc source, or records of patients treated in some uniform nlanncr)  a certain degree of invariance
can bc cxpcctcd.  ‘1’llc  volcano ljmb]cm is O1lC such example.

8.4 Tllc Ned for An Adaptive Approach

T1 : volcano drt cction and catalogil]g prol.)lcm  is a good example of a situation that is becoming
7:Lll tOofiOllllUOIL  ill lll:llly  fidCk, .\l)ZLllllillg  scielm: data analysis, medical image analysis, commercial ~JL{’ ~ ~~:,~

gral)llic arts, sllrvcillance,  and  so forth. ‘1’11(’  volumes of clata :Lre so large that comprehensive dff”
Illallual :Ilmlysis ill]d  search is ~mt l)ossible. Since most users are not programmers or experts in ‘
l)attern recogllit,  ion, till a(lal)tive al)l)roacll  I)ased  on learning from examples is gradually becoming
a ?Lcccsszty  ill solne scttillgs. It’olli on developing rob~lst  algorith] m to address such needs is very
lIIUC1l  needed.
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9 Conclusion

‘1’llis IMLIJW discussed t llc general ]Nobknn of t ranslati]lg  a large ilna~e  dataset into a catalog of ob-
jrcts of illtcrcst,  i]] l)nrticular,  tl~c problem of detecting and catalog;  ill,g  small volcanoes on the surface
of Vclilm.  Sciclltific  Ilscrs arc ofteu not interested in tl~c image clata per se but in derived products
SIICII  as catalogs and libraries of objects of il]tcrcst: these catalogs for]n the basis for quantitative
scicnt, ifi( :~11:~1~’sis.  ~\ 1 raillab]c detection systcm for alltonlatically  generating volcano catalogs was
discussed, l’;xl)(llilll(:llt:Ll  rcsu]ts sllowwl  that tlkc system is ap~m)aching  human performance on
lloIllo~cIJco(ts  SC(S of ilnagcs  bllt pcrforlns  poorly  on illhomoge~leou.s  image sets. Combining prior
inforlnatio)l  ~vitll  (I:ata and modeling subjective human opiniou were both identified and discussed
as IK:jr iss~lcs ill ])rol)l(’l]ls  of tliis lmture.

‘1’lkis  lml)rr :iillls  to provide an example of an i]nportallt  large-scale application in the area
of aiding  lllllnam  ill tllc ana]~’sis  of a large digital library, A secondary aim is to emphasize the
IIWX1 for a Ilatllral  il](c!rfacc  between )luInans  and digital libraries: one where the user can interact
directly with tl)c lil)ri\~y  contents ~vithout the llecd for a progralmnw  (or a team of programmers)
ill the 100]) to produce customizcci  pattern rccogllizers for each cat: Lloging  and recognition task. A
lcarlli~~g-flol~  ~-ex:il)l])lcs  approach could provicle  the l)asis for SUCII a practical and natural interface
for (:crt,aill  classes of  lar?,c-scale cligital  in~age  data sets.
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Appendix 1: Obtaining the Magellan  Datasc:t and Lists of Images
Used in the Experiments

IIOW to obtain tllc Magcllan  Images  and Labels

Note to the llcf’crocs  ant] Ylclitor:  WC are in the process of constructing a WWW page which
will allow {Iircct  :LCCCSS  tc~ both the ilnagc data and la} )c1 data desmibed  in this paper. This WWW
lxige ~vill  l)e accessil)lc  via http: //www-aig.  jpl .nasa.  gov/mls/mgn-sar.

Lists  of which  IInages  were used in e a c h  E x p e r i m e n t

Note t]mt lwatiol]  of ml ilnagc is illdicatccl  by a ulliclllc  directory name (or “product”) of the form
fafmx~)z wllmc ah is the longtitLlte,  n denotes the NOL4 hem  Hemisphere in this case, and zyz is the
latituclc. I{;acll l)rocl[lct  (directory) contains 56 images arranged in a, 7x8 contiguous grid, nLmlbered
fronl tol) lcftl to Imt,tom right.

‘1’hc set of 4 i)nagcs  calnc from directory ROn332 :Lnd consisted of : ff05, ff13, ff20, and ff21.
The set, of 38 ilnagcs consisted of 6 sets of 6 images from directory f30n332 where each image

is dcnot,cd as ffk~l and t,l)c xys are organized as follows:

● set (a) 22, 24, 28, 39, 52, 55

● set (b) 04, 06, 32, 36, 47, 54

● set (c) 07, 14, 23, 37, 40, 44

● set (C]) 03, 15, ]~, 31, 38, 53

● set (c) 08, 12, 27, 30, 43, 56

● set (f) 11, 16, 29, 35, 46, 48

II] addition tllcre \\rcrc two extra images, ff45 al~d ff51 which were not part of any test set and were
used in all 6 training  sets. The  remaining images we] e primarily blank and were not used in the
cxl)crilncllts.  lhc]l cxl)erimcnt  consisted of using one of (a), (b), (c), (cl), (e), and (f) as test set
ancl training on the other images plus ff45 and ff51.

‘1’llc  set of 36 illholllogcncous  images were broken down into 4 sets of 9 images, (a)-(d), where
for each cxlmrin~cl~t  each of (a)-(d) was denoted the ttst set and the algorithm was trained on the
other 3 sets, ‘1’lIc sets were:

● set (a): f40n272-ff34,  f05s312-ff33,  f30n281-ff19, f50n197-ff26, f25n284-ff37,  f40n272-ff24, f10n21 1-
ff54, f10n279-fR8, fi’5n351-ff47.

● set (b): f.50s088-ff36, f10s301  -ff19, f75n237-ff5, f40n286-ff39, fOfi~1284-ff44,  f60n302-ff37,  fOOn279-
f137, f40n244-fi50,  f15n129-ff08.

● set (c): f] 0n267-fiOl , f45sO12-ff51  , f25s302-ff18,  f] ,5nf)20-ff53, f30n332-ff12, f25s302-ff30, fOOn3l8-
fj’~1 , i’uSs211-f~~l,  f251122$)-ff47.

● set, ((]): f] 0M7G-fF23, f15n283-ff27, f10s245-ff38,  f] 5n283-ff49, f45n188-ff20, f05s290-ff43, f20s257-
ff54, f25sl 9s-f[54, f55n291-ff’45.

For each image the x,y coordinates of the volcanoes as labeled (cstimatecl) by geologist A, B or
the conscl]s(ls  of l)otll (dcpcndi])g on which is available for each ima~c) is available from the WWW
l)agc Incntiollcd al)ove.
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Appendix 2: Default Settings for A Igorithm Parameters

1]1 all of (IIc cxpcrimcmts in the paper,  unless otherwise stated, the algorithm ~Jaran~eters  were set
to default, values W11OSC wducs WWrC clckcrminccl  ma]mally from experimenting with the set of 4
iInagcs dcscrilml  in earlier work [17]. In particular,

o JI1 t,raillillgj  all v o l c a n o e s  arc trcatd cqual]y,  it:., the catcgc)rics I-4 are not used to weight
tllc t,raillillg in any way.

● ‘1’lle  Ivilldow  }i~i(ltll k] for tllc clctcctor was 30 pixels.

● ‘1’llc  tllrcsllolcl  value for the clctector was 0.35.

● ‘J’lic  ~villdow  width k2 for the derivation of the SVI) dcconll)cJsition  was 15 pixels: these 15 x
1 ~ wit~dows  were obtainccl by subsamplillg  the 30 x 30 local regions by a factor of 2.

● TIIC threshol(l  for tl~c dctmtion  clusteri])g algorithm was 4 pixels,

● TIIc number of l)ri~lcipal  components (features) used for clarification was 6,

● ‘1’llc  classification mcthocl used was a maximun--likelihood  Gaussian classifier, with indepen-
dent full-  covariallcc matrices for each class.

● l,ct 7’.,5 bc l)~l]f the  csthnatcd radius  (according to the referellce list) of a volcano close  to a
dctcctcd location. A region was declared a detection if the Euclidean distance d between the
location of the clctcction and the location of the volcarlo on the reference list, was less then
7’..5, un]css  ?’.,5 < 5 pixels in which case T0,5 is replaced by 5, or ro,5 > 15 pixels in which
case 7’.,5 is replaced by 15. Thus, the criterion for a detection wax that the detected location
bc within half the radius of the reference volcano LU]lCSS  tile radius is extremely small or
ext rcmcly  large, E] npiricall y it has heel 1 found that volcanoes rarely overlap thus effectively
cli]ni~latillg  the problem of detecting multiple volcanoes which arc very close together,
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